FEATURES:

- Enhanced N channel FET with no inherent diode to Vcc
- 16:8 multiplexer function with zero delay
- 5Ω bidirectional switches connect inputs to outputs
- Zero propagation delay, zero ground bounce
- Low power CMOS proprietary technology
- Undershoot clamp diodes on all switch and control inputs
- Direct bidirectional connection for mux, demux
- Available in SOIC and QSOP packages

APPLICATIONS:

- Video, audio, graphics switching, muxing
- Hot-swapping, hot-docking
- Voltage translation (5V to 3.3 V)

DESCRIPTION:

The QS3390 provides a 16:8 multiplexer logic switch. The low ON resistance (5Ω) of the QS3390 allows inputs to be connected to the outputs without adding propagation delay and without generating additional ground bounce noise.

Mux/Demux devices provide an order of magnitude faster speed than equivalent logic devices.

The QS3390 is characterized for operation at $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$.

The IDT logo is a registered trademark of Integrated Device Technology, Inc.

PIN CONFIGURATION

SOIC/ QSOP/ TSSOP
TOP VIEW

ABSOLUTE MAXIMUM RATINGS(1)

Symbol	Description	Max	Unit
VTERM $^{(2)}$	Supply Voltage to Ground	-0.5 to +7	V
VTERM $^{(3)}$	DC Switch Voltage Vs	-0.5 to +7	V
VTERM $^{(3)}$	DC Input Voltage VIN	-0.5 to +7	V
VAC	AC Input Voltage (pulse width $\leq 20 \mathrm{~ns})$	-3	V
IOUT	DC Output Current	120	mA
Pmax	Maximum Power Dissipation $\left(\mathrm{T}_{\mathrm{A}}=85^{\circ} \mathrm{C}\right)$	0.5	W
TsTG	Storage Temperature	-65 to +150	${ }^{\circ} \mathrm{C}$

NOTES:

1. Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.
2. Vcc terminals.
3. All terminals except Vcc .

CAPACITANCE $\left(T_{A}=+25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}, \mathrm{V} \mathbb{N}=\mathrm{OV}, \mathrm{V}\right.$ out $\left.=\mathrm{OV}\right)$

Pins		Typ.	Max. ${ }^{(1)}$	Unit
Control Inputs		4	5	pF
QuickswitchChannels	Demux	5	7	pF
(Switch OFF)	Mux	9	10	

NOTE:

1. This parameter is guaranteed but not production tested.

PIN DESCRIPTION

Pin Names	$I / 0$	Description
$\mathrm{A}_{0}-\mathrm{A} 9$	$1 / 0$	Bus A
$\mathrm{B} 0-\mathrm{B} 9$	$\mathrm{I} / 0$	Bus B
$\overline{\mathrm{AEN}}, \overline{\mathrm{BEN}}$	I	Bus Switch Enable

FUNCTIONTABLE ${ }^{(1)}$

$\overline{\text { AEN }}$	$\overline{\text { BEN }}$	A0-A9	B0 - B9	Function
H	H	Off	Off	Disconnect
L	H	On	Off	A to $A B$
H	L	Off	On	B to $A B$
L	L	On	On	A, B to $A B$

NOTE:

1. H = HIGH Voltage Level

L = LOW Voltage Level

DC ELECTRICAL CHARACTERISTICS OVER OPERATING RANGE

Following Conditions Apply Unless Otherwise Specified:
Industrial: $\mathrm{TA}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}, \mathrm{VcC}=5 \mathrm{~V} \pm 5 \%$

Symbol	Parameter	Test Conditions	Min.	Typ. ${ }^{(1)}$	Max.	Unit
VIH	Input HIGH Voltage	Guaranteed Logic HIGH for Control Pins	2	-	-	V
VIL	InputLOW Voltage	Guaranteed Logic LOW forControl Pins	-	-	0.8	V
IIN	InputLeakage Current(Control Inputs)	$\mathrm{OV} \leq \mathrm{VIN} \leq \mathrm{VCC}$	-	-	± 1	$\mu \mathrm{A}$
loz	Off-StateCurrent(Hi-Z)	OV \leq Vout \leq Vcc	-	-	± 1	$\mu \mathrm{A}$
RoN	Switch ON Resistance	VCC $=$ Min., VIN $=0 \mathrm{~V}$, ION $=30 \mathrm{~mA}$	-	5	7	Ω
		VCC $=$ Min., VIN $=2.4 \mathrm{~V}$, ION $=15 \mathrm{~mA}$	-	10	15	
Vp	Pass Voltage ${ }^{(2)}$	$\mathrm{VIN}=\mathrm{VCC}=5 \mathrm{~V}$, IOUT $=-5 \mu \mathrm{~A}$	3.7	4	4.2	V

NOTES:

1. Typical values are at $\mathrm{VCC}=5 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
2. Pass voltage is guaranteed but not production tested.

TYPICAL ON RESISTANCE vs VIN AT Vcc $=5 \mathrm{~V}$

Vin
(Volts)

POWER SUPPLY CHARACTERISTICS

Symbol	Parameter	Test Conditions ${ }^{(1)}$	Max.	Unit
ICCQ	Quiescent Power Supply Current	Vcc = Max., VIN = GND or Vcc, f $=0$	3	$\mu \mathrm{A}$
$\Delta \mathrm{lcC}$	Power Supply Current per Input HIGH ${ }^{(2)}$	Vcc = Max., VIN = 3.4V, f=0	1.5	mA
ICCD	Dynamic Power Supply Current per MHz ${ }^{(3)}$	Vcc = Max., A, B, and AB Pins Open, Control Inputs Toggling @ 50\% Duty Cycle	0.25	$\mathrm{mA} / \mathrm{MHz}$

NOTES:

1. For conditions shown as Min. or Max., use the appropriate values specified under DC Electrical Characteristics.
2. Per TTL-driven input ($\mathrm{V} \ln =3.4 \mathrm{~V}$, control inputs only). A, B, and AB pins do not contribute to $\Delta \mathrm{lcc}$.
3. This current applies to the control inputs only and represents the current required to switch internal capacitance at the specified frequency. The A, B, and $A B$ inputs generate no significant AC or DC currents as they transition. This parameter is guaranteed but not production tested.

SWITCHING CHARACTERISTICS OVER OPERATING RANGE

$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}, \mathrm{Vcc}=5 \mathrm{~V} \pm 5 \%$
CLOAD $=50 \mathrm{pF}$, RLOAD $=500 \Omega$ unless otherwise noted.

Symbol	Parameter	Min. ${ }^{1}{ }^{\text {(}}$	Typ.	Max.	Unit
$\begin{aligned} & \text { tPLH } \\ & \text { tPHL } \end{aligned}$	DataPropagation Delay ${ }^{(2)}$ A, B, to/from AB	-	-	$0.25{ }^{(3)}$	ns
$\begin{aligned} & \text { tPZL } \\ & \text { tPZH } \end{aligned}$	Switch Turn-On Delay $\overline{\mathrm{AEN}}, \overline{\mathrm{BEN}}$ to $\mathrm{A}, \mathrm{B}, \mathrm{AB}$	1.5	-	6.5	ns
$\begin{aligned} & \text { tPLZ } \\ & \text { tPHZ } \end{aligned}$	Switch Turn-Off Delay ${ }^{(2)}$ $\overline{\operatorname{AEN}}, \overline{\mathrm{BEN}}$ to $\mathrm{A}, \mathrm{B}, \mathrm{AB}$	1.5	-	5.5	ns

NOTES:

1. Minimums are guaranteed but not production tested.
2. This parameter is guaranteed but not production tested.
3. The bus switch contributes no propagation delay other than the RC delay of the ON resistance of the switch and the load capacitance. The time constant for the switch alone is of the order of 0.25 ns at $C_{L}=50 \mathrm{pF}$. Since this time constant is much smaller than the rise and fall times of typical driving signals, it adds very little propagation delay to the system. Propagation delay of the bus switch, when used in a system, is determined by the driving circuit on the driving side of the switch and its interaction with the load on the driven side.

ORDERINGINFORMATION

QS $\frac{X X X X X}{\text { Device Type }} \frac{X X}{\text { Package }} \frac{X}{\text { Process }}$

3390

Industrial $\left(-40^{\circ} \mathrm{C}\right.$ to $\left.+85^{\circ} \mathrm{C}\right)$

Small Outline IC Quarter Size Outline Package QSOP - Green

High Speed CMOS QuickSwitch 16:8 Multiplexer

